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Accuracy thresholds of quantum error correcting codes, which exploit topological properties of systems,
defined on two different arrangements of qubits are predicted. We study the topological color codes on the
hexagonal lattice and on the square-octagonal lattice by the use of mapping into the spin-glass systems. The
analysis for the corresponding spin-glass systems consists of the duality, and the gauge symmetry, which has
succeeded in deriving locations of special points, which are deeply related with the accuracy thresholds of
topological error correcting codes. We predict that the accuracy thresholds for the topological color codes
would be 1− pc=0.1096–8 for the hexagonal lattice and 1− pc=0.1092–3 for the square-octagonal lattice,
where 1− p denotes the error probability on each qubit. Hence, both of them are expected to be slightly lower
than the probability 1− pc=0.110 028 for the quantum Gilbert-Varshamov bound with a zero encoding rate.
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I. INTRODUCTION

In quantum information processing, we encode informa-
tion into a quantum state. However, the quantum state suffers
from decoherence by surroundings. We need an encoding
technique to restore errors on the quantum state by decoher-
ence, namely, the error correcting code. It has been pointed
out that error correction of the quantum state has a deep
connection with spin-glass models and lattice gauge theories
in finite dimensions. An outstanding instance has been found
between the random bond Ising model, as well as the random
plaquette gauge model, and the topological toric code �1�.
Recently it has been shown that a more useful quantum error
correcting code, the topological color code, also has a con-
nection with the spin glasses �2,3�.

These fascinating bridges between the spin-glasses and
the quantum error correcting codes are established in a spe-
cial subspace in spin glasses. This subspace is known as the
Nishimori line, which goes through the phase boundary be-
tween the ferromagnetic and paramagnetic phases as shown
in Fig. 1 �4,5�. The ferromagnetic phase on the Nishimori
line represents the region, where errors on the quantum state
can be restored, and vice versa. Thus, the critical point on
this subspace in spin glasses corresponds to an accuracy
threshold of the quantum error correcting code. The critical
point on this line is called the multicritical point.

There are little exact and rigorous approaches for spin
glasses in finite dimensions. One of the powerful theoretical
techniques is the gauge symmetry on the Nishimori line. On
this line, we can calculate the exact value of the internal
energy, evaluate the upper bound for the specific heat, and
obtain some sets of rigorous and exact inequalities by the
gauge symmetry �4,5�. In addition, the analytical theory es-
timating the precise location of the multicritical point has
been established by a technique with the duality and the
replica method �6–10�. In the present study, we analyze two
spin-glass models: the random three-body Ising model ��J

type� on the triangular lattice and the Union-Jack lattice.
These models have deep connections with the topological
color codes defined on the hexagonal and square-octagonal
lattices, which implements several useful quantum gates
�2,3�. We present the analysis of estimations of the error
thresholds of these topological color codes through the
analysis of the location of the multicritical point for the ran-
dom three-body Ising model on two lattices. As a result, we
predict the accuracy threshold of the color code on the
hexagonal lattice, which corresponds to the random three-
body Ising model on the triangular lattice, would be
1− pc=0.1096–8 and that on the square-octagonal lattice,
which has a connection with the random three-body
Ising model on the Union-Jack lattice, would be
1− pc=0.1092–3, where 1− p represents the error probability
on qubits by decoherence.

II. DUALITY

Let us review several known facts in the present section to
fix the notation and prepare for the developments in the next
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FIG. 1. Schematic picture of the phase diagram of the �J Ising
model on two-dimensional lattice �left panel� and on higher dimen-
sions �right panel�. The vertical axis expresses the temperature T
and the horizontal line denotes the concentration p of the antiferro-
magnetic interactions. The multicritical point �MCP� is described by
the black point. The Nishimori line is drawn by the dashed line. For
higher dimensions, not only the ferromagnetic �FM� and paramag-
netic phases �PM� but also the spin-glass phase �SG� exists. The
phase boundary under the Nishimori line is believed to be vertical
by the argument of the gauge transformation �4�.
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section. We take the three-body Ising model on the triangular
lattice as an example here for simplicity. It is straightforward
to generalize the following arguments to the Union-Jack lat-
tice.

The Hamiltonian of the three-body Ising model on the
triangular lattice is

H = − J�
�ijk�

�i� j�k, �1�

where the summation is taken over all the triangles �both of
up-pointing and down-pointing triangles�, and � is the Ising
spin variable taking �1 on sites as in Fig. 2. This model is
known as a self-dual model �11,12� and has a single transi-
tion point Tc=2.269 19, which is the same as the ordinary
two-body Ising model on the square lattice �13�. We use
another expression for convenience as follows:

H = − J�
�ijk�

cos����i + � j + �k�	 . �2�

Here the spin variable is changed into � taking 0 and 1. It
will be useful to review the duality transformation for the
nonrandom three-body Ising model on the triangular lattice
through the Wu-Wang formalism �14�, which is more suit-
able for the application to spin glasses. We consider the face
Boltzmann factor for an elementary triangle,

A�i+�j+�k
= eK cos����i+�j+�k�	, �3�

where K is the coupling constant K=�J. We introduce two-
component Fourier transform of the face Boltzmann factor as

Ak
� =

1

2

�eK + e−K cos �k� . �4�

If we use this quantity and another variable kI, which takes 0
or 1, on each elementary triangle as in Fig. 2, we can rewrite
the face Boltzmann factor as, similarly to case for the ordi-
nary two-body Ising model on the square lattice �14�,

A�i+�j+�k
=

1

2� �

kI=0,1
AkI

� ei�kI��i+�j+�k�� . �5�

Using this expression, we can rewrite the partition function
of the three-body Ising model on the triangular lattice as

Z�K� = �
��i	



I

A�i+�j+�k
, �6�

=� 1

2

�N

�
��i	

�
�kI	



I

AkI

� ei�kI��i+�j+�k�, �7�

where N is the number of triangles. We take the summation
over � and obtain constraints expressed by the Kronecker
delta with modulus 2 on each site i on the triangular lattice
2��k1+k2+k3+k4+k5+k6�, where kI surrounds each site as in
Fig. 2. The partition function is then rewritten as

Z�K� = 2N/2� 1

2

�N

�
�kI	



I

AkI

� 

i

��k1 + k2 + k3 + k4 + k5 + k6� .

�8�

We introduce another variable kI=�i+� j +�k �mod 2�, which
satisfies all the constraints, and obtain

Z�K� = �
��i	



i

A�1+�2+�3

� , �9�

where �i also takes 0 and 1 and is located at each site. We
obtain two expressions for the partition function Z�K� by the
original and dual face Boltzmann factors as in Eqs. �6� and
�9�. We extract the principal Boltzmann factors A0 and A0

� as,
to measure the energy for both of these expressions from the
state with all-spin up,

A0
Nz�u1� = A0

�Nz�u1
�� , �10�

where z stands for the normalized partition function
z�u1�=Z /A0

N and z�u1
��=Z / �A0

��N. The quantities u1 and u1
� are

defined as u1=A1 /A0 and u1
�=A1

� /A0
�. Each partition function

is now reduced to a single-variable function of u1=e−2K and
u1

�=tanh K. We can identify the critical point as a fixed point
of the duality by solving e−2Kc =tanh Kc, under the assump-
tion of a unique transition. We remark that at this fixed point,
an appealing equation for two principal Boltzmann factors is
satisfied A0=A0

�.

III. MULTICRITICAL POINT

We step in the analysis of the location of the multicritical
point for the random three-body Ising model on the triangu-
lar lattice, which is related with the accuracy threshold of the
topological color code on the hexagonal lattice �2�. The
Hamiltonian is slightly modified as

H = − J�
�ijk�

�ijk cos��i + � j + �k� , �11�

where �ijk denotes the quenched random coupling. Though
various types of distribution for �ijk can be considered, we
here restrict ourselves to the �J Ising model, which has a
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FIG. 2. Triangular lattice and Union-Jack lattice. The site vari-
able � is located at each site and the plaquette variable kI is intro-
duced at each triangular face. The plaquette variables form a struc-
ture of the hexagonal and square-octagonal lattices.
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connection with the topological color code. The distribution
function for the �J Ising model is

P��ijk� = p���ijk − 1� + �1 − p����ijk + 1� =
eKp�ijk

2 cosh Kp
,

�12�

where Kp is defined by e−2Kp = �1− p� / p. The Nishimori line
is given by the condition K=Kp �4,5�.

We apply the replica method to the �J Ising model. The
n-replicated partition function after the configurational aver-
age is

Zn = ��
��i	



�ijk�



	=1

n

exp�K�ijk�i
	 cos��i + � j + �k�	�

av

,

�13�

where n stands for the replica number and the angular brack-
ets denote the configurational average. We generalize the du-
ality argument to the n-replicated �J Ising model �6–10�.
For this purpose, it is useful to define the face Boltzmann
factor Ak�k=0,1 , . . . ,n�, which represents the configuration-
averaged face Boltzmann factor for interacting spins with k
triplets giving �i+� j +�k=1 �mod 2� among n triplets for a
triangle. The duality gives the relationship of the partition
functions with different values of the face Boltzmann factor
as given by

Zn�A0,A1, . . . ,An� = Zn�A0
�,A1

�, . . . ,An
�� . �14�

The dual face Boltzmann factors Ak
� are defined by the dis-

crete multiple Fourier transforms of the original face
Boltzmann factors, which are simple combinations of plus
and minus of the original Boltzmann factors as the
nonrandom case shown above. Two principal Boltzmann fac-
tors are important pieces of information and given as
A0=2 cosh��n+1�K	, and A0

�=2n/2 coshn K, similarly to the
case for the random bond Ising model on the square lattice
�6,7�. We extract these principal face Boltzmann factors from
Eq. �14� to measure the energy from the all-parallel spin
configuration,

A0
Nzn�u1,u2, . . . ,un� = A0

� Nzn�u1
�,u2

�, . . . ,un
�� , �15�

where zn�u1 ,¯� and zn�u1
� ,¯� are defined as Zn /A0

N and
Zn / �A0

��N.
The duality identifies the critical point under the assump-

tion of a unique phase transition. It is given as the fixed point
of the duality and is known to yield the exact critical point
for a simple ferromagnetic system as reviewed in the previ-
ous section. In order to obtain the multicritical point of the
present replicated spin-glass system, we set K=Kp, which
defines the Nishimori line on which the multicritical point is
expected to lie. Since zn is a multivariable function, there is
no fixed point of the duality relation in the strict sense which
satisfies n conditions simultaneously, u1�K�=u1

��K� ,u2�K�
=u2

��K� , . . . ,un�K�=un
��K�. This is in sharp contrast to the

nonrandom case, in which the duality is a relation between
single-variable functions. We nevertheless set a hypothesis
that a single equation A0=A0

� gives the location of the mul-
ticritical point for any replica number n �6,7�, similarly to the

nonrandom three-body Ising model at the critical point. The
quenched limit n→0 for the equation A0=A0

� yields �6,7�

− p log p − �1 − p�log�1 − p� =
1

2
log 2. �16�

The solution to this equation is pc=0.889 972. This estima-
tion pc=0.889 972 is equivalent to the probability for the
quantum Gilbert-Varshamov bound with zero rate encoding
1− pc=0.110 028 �15,16� and consistent with the very recent
numerical estimation pc=0.891�2� by Katzgraber et al. �2�.

For the random three-body Ising model on the Union-Jack
lattice, the same duality analysis can be applied and we ob-
tain the same solution. In the context of the quantum error
correction, these results mean that the accuracy thresholds
for the color codes on the hexagonal and square-octagonal
lattices are given by 1− pc=0.110 028 for error probability
on qubits. This consequence would not be correct since two
color codes have different computational capabilities �17�.
For the topological color code on the square-octagonal lat-
tice, it is possible to implement the whole Clifford group of
unitary gates generated by the Hadamard gate, the �� /8	
gate, and the controlled-NOT gate; while, for that on the hex-
agonal lattice, the �� /8	 gate cannot be implemented. In spin
glasses, the quenched randomness yields frustration depend-
ing on geometry of lattices, and the locations of the multi-
critical points in quenched random systems are thus different
in general. In addition, the symmetry �e.g., spin reversal� is
quite different between two-body and three-body Ising mod-
els, while the above estimation is also given for the case of
the two-body �J Ising model on the self-dual lattices �6,7�.
The above naive approach by the analysis of two face Bolt-
zmann factors defined on a single triangle would not yield
correct answer, which reflects on the detailed property of
systems, the symmetry, and the shape of the lattice under
consideration. Indeed, the detailed analysis through exact
calculations by the virtue of the hierarchical lattice has
shown deviations between the results obtained by the above
naive approach and the answers �9,18�. It is, however, very
difficult to obtain a precise value of the location of the mul-
ticritical point, that is, the accuracy threshold, by numerical
approaches because of the necessity of very long time for the
equilibration and statistical error for the average of the
quenched randomness. In the following section, instead of
the numerical approach, we apply an analytical theory, the
improved method for a precise location of the multicritical
point �10�. The purpose of the following analysis is to find
deviations from the pc=0.889 972 given by the naive ap-
proach and to detect a slight difference between the location
of the multicritical points for the triangular and Union-Jack
lattices.

IV. IMPROVED METHOD

As shown in Figs. 3 and 4, let us consider to sum over a
part of the spins called a cluster below, on the triangular
lattice and the Union-Jack lattice. The previous technique is
only consideration of the “local” principal Boltzmann factors
A0 and A0

� defined on an elementary triangle, which does not
necessarily reflect the effects of frustration inherent in spin
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glasses. Then the set of clusters must be chosen to cover the
whole lattice under consideration as in Figs. 3 and 4, where
six examples for the triangular lattice and three ones for the
Union-Jack lattice of the choices of clusters are depicted. It
is expected that if we deal with clusters of larger sizes, the
improved method shows systematic improvements toward
the exact answer on the location of the multicritical point
�10�.

Then the duality relation for the replicated partition func-
tions is reduced to

Zn
�r��A0

�r�,A1
�r�,¯� = Zn

�r��A1
��r�,A2

��r�,¯� , �17�

where the superscript r stands for the type of the cluster that
one chooses. The quantity Ak

�r� is the local Boltzmann factor
including many-body interactions generated by summation
over spins marked black in Fig. 3. We define the principal
Boltzmann factors A0

�r� and its dual A0
��r� as those with all

spins surrounding the cluster in the up state. We assume that
a single equation gives the accurate location of the multicriti-
cal point for any number of n, similarly to the naive ap-
proach,

A0
�r� = A0

��r�. �18�

This is the improved method to predict a location of the
multicritical point with higher precision than the naive ap-
proach.

One example is the hexagonal cluster as denoted by T1 in
Fig. 3. The principal Boltzmann factors of the type T1 are
given as

A0
�T1� = ��

��0
		



	=1

n



I=1

6

eK�I�0
	�

av

= �2n coshn��
I=1

6

K�I��
av

,

�19�

and

A0
��T1� = �2−3n �

��0
		



	=1

n



I=1

6

�eK�I + e−K�I�0
	��

av

= �23n�cosh6 K + 

I=1

6

�I sinh6 K��
av

, �20�

where �I is defined on each plaquette as shown in Fig. 3. We
estimate a more precise location of the multicritical point of
the �J three-body Ising model on the triangular lattice as
pc=0.890 212 by Eq. �18�.

One needs to calculate two local principal Boltzmann fac-
tors by summation over the internal spins and evaluate the
configurational-averaged values for them as in Eqs. �19� and
�20� for the improved method. The computational complex-
ity of the estimation of the multicritical point by the im-

proved method is O�2N�r�+Ns
�r�

�, where N�r� is the number of
interactions in the cluster and Ns

�r� is that of internal sites. In
reasonable time, we perform the improved method for the
location of the multicritical point on the triangular lattice
from N�T1�=6 to N�T5�=24 and on the Union-Jack lattice from
N�U1�=4 to N�U3�=16 as in Figs. 3 and 4. The results obtained
by the improved method are summarized in Table I. As you
can see, all the results by the improved method show higher
values pc than pc=0.889 972 by the naive approach. In the
context of the quantum error correcting code, the error
threshold of the topological color code is lower than the
probability 1− pc=0.110 028 for the quantum Gilbert-
Varshamov bound with zero rate encoding as in Table I
�15,16�.

Next, let us examine the performance of the improved
method—how close to the exact answer—for the random
three-body Ising model on the triangular and Union-Jack lat-
tices. If we formulate the above analysis without restriction
to the Nishimori line, we can give an approximative shape of
the phase boundary �10�. We estimate the value of the slope
at the critical point Tc for p=1 as listed in Table I. It is one of
the references for the performance of the improved method
to compare these values with the solution obtained by a
simple perturbation 3.20911 �19�, which is essentially the
same way as Domany’s result for the two-body Ising model
on the square lattice �20�. Since the computational complex-

ity can be reduced to O�N�r�2Ns
�r�

� for the calculation of the
slope of Tc at p=1 by the improved method, we evaluate
only the values of the slope by using larger size of the clus-
ters denoted by T6, T7, and T8 as in Fig. 5. As you can see in
Table I for the case for the triangular lattice, if the number of
the interactions in the cluster becomes larger, the estimations
for the slope of Tc by the improved method steadily decrease

UT

T

0 0

1
2

3

4
5

T

T

T
T

FIG. 3. Several clusters for the �J three-body Ising model on
the triangular lattice. These are chosen to cover the whole lattice. A
cluster is the unit plaquette encircled by white spins. The spins
marked black on the original lattice are traced out to yield interac-
tions among white spins in clusters. The case denoted by T0, and U0

gives the principal Boltzmann factor used in the naive approach.

U

U

U

1

2

3

FIG. 4. Several clusters for the �J three-body Ising model on
the Union-Jack lattice.
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into the perturbation solution 3.20911, but the convergence
into the value is extremely slow. Such a behavior of the slope
of Tc at p=1 is a sharp difference from the case for the
two-body �J Ising model on the square lattice �10�. Though
it is thus expected that the predictions of the location of the
multicritical point by the improved method certainly ap-
proach the exact answer, our estimation pc=0.8902–4 for the
random three-body Ising model on the triangular lattice is a
delicate conclusion. At least, we can state that the accuracy
threshold 1− pc for the color code on the hexagonal lattice is
lower than the quantum Gilbert-Varshamov bound with a
zero rate encoding.

On the other hand, we obtain a relatively reliable result
for the Union-Jack lattice, though we find an exception of the
systematic improvement by the use of larger size clusters the

result by U2 cluster. From the difference between two values
for the slope of Tc at p=1 by the improved method and the
perturbation solution, U2 cluster is considered to be a wrong
approximation for estimations of the location of the multi-
critical point. It is considered that the shape of U2 cluster is
slightly different from the series of other clusters as shown in
Fig. 4. If we use a series of the similar clusters to U1 and U3
�see Fig. 5� for the further approximations for the slope of Tc
at p=1, we find convergence into the perturbation result
3.20911, which can be derived in the same way in Refs.
�19,20�, with a similar degree to the case for the two-body
�J Ising model on the square lattice �10�. We thus predict
that the location of the multicritical point for the Union-Jack
lattice would be pc=0.8907–8 from the results by U1 and U3
clusters or, equivalently, the accuracy threshold for the color
code on the square-octagonal lattice is 1− pc=0.1092–3.

The improved method thus strongly depends on the shape
of the used cluster, as well as the number of interactions
included in the cluster. It is considered that the systematic
improvement with convergence into the answer is yielded by
the ingenious choice of the shape of the cluster following
properties and symmetry of the lattice under consideration.
We would be able to approach the exact answer when we
choose the clusters keeping the underlying symmetry in
mind in a systematic way. The slow convergence for the case
on the triangular lattice would be caused by an inadequate
choice of the clusters on it. This point should be clear in the
future.

V. CONCLUSION

We predicted the accuracy thresholds of the topological
color codes on the hexagonal and square-octagonal lattices,
which are kinds of the quantum error correcting codes ex-
ploiting the topological properties in systems. These accu-
racy thresholds correspond to the locations of the multicriti-
cal points for the random three-body Ising models on the
triangular and Union-Jack lattices, respectively. The accu-
racy thresholds of these two topological color codes are ex-
pected to be lower than the probability for the quantum
Gilbert-Varshamov bound with zero rate encoding. Accept-
ing our estimations, we find that the accuracy thresholds of
two color codes are equivalent to that of the quantum toric
code on the square lattice, which corresponds to the location
of the multicritical point for the �J Ising model on the
square lattice �1�. The accuracy threshold is given as
1− pc=0.1092–3 from several results by the improved
method �10�, 1− pc=0.109 19�7� by highly precise Monte
Carlo simulation �21�, and a very recent estimation
1− pc=0.109 39�6� by the concept of the conformal field
theory �22�. In conclusion, the topological color code on the
hexagonal and square-octagonal lattice would have equiva-
lent robustness to that of the topological toric code on the
square lattice despite their computational capabilities. This
fact is indeed shown by the numerical simulation performed
in very recent work by Katzgraber et al. �2�. The present
work provided the same conclusion but would be valuable as
the analytical prediction of the topological color codes on the
hexagonal and square-octagonal lattices.

TABLE I. Location of the multicritical point of the �J three-
body Ising model on the triangular lattice �from T1 to T5� and on
the Union-Jack lattice �from U1 to U3�. The number of the triangles
in the cluster is written in the second column. We estimate the
values for the slope at the critical point Tc and set them in the
rightmost column.

Type No. pc 1− pc Slope

T0,U0 1 0.889972 0.110028 3.41421

T1 6 0.890212 0.109788 3.39884

T2 18 0.890321 0.109679 3.39031

T3 24 0.890358 0.109617 3.38478

T4 16 0.890344 0.109656 3.38507

T5 24 0.890404 0.109596 3.37558

T6 42 none none 3.36985

T7 54 none none 3.36796

T8 60 none none 3.36736

U1 4 0.890725 0.109275 3.33658

U2 16 0.890394 0.109606 3.37078

U3 16 0.890825 0.109075 3.32365

U4 36 none none 3.30885

U5 64 none none 3.29998

Perturbation 3.20911a

aReferences �19,20�.

�

�

�

�

�

�

�

�

�

�

FIG. 5. Supplementary clusters for the computation of the slope
of Tc at p=1.
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